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André Voros
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Abstract. The stationary 1D Schrödinger equation with a polynomial potentialV (q) of degree
N is reduced to a system of (complex) exact quantization conditions of Bohr–Sommerfeld form.
They arise from bilinear (Wronskian) functional relations pairing spectral determinants of(N + 2)
generically distinct operators, all the transforms of one quantum Hamiltonian under a cyclic group
of complex scalings. The determinants’ zeros define(N + 2) semi-infinite chains of points in
the complex spectral plane, and these encode the original quantum problem. Now, each chain
can be assigned an exact quantization condition which constrains it relative to its neighbours,
resulting in closed equilibrium conditions for the global chain system; these are supplemented by
the standard (Bohr–Sommerfeld) quantization conditions, which bind the infinite tail of each chain
asymptotically. This reduced problem is then probed numerically for effective solvability upon
test cases (mostly, symmetric quartic oscillators): we find that the iterative enforcement of all the
quantization conditions generates discrete chain dynamics which appear to converge geometrically
towards the correct eigenvalues/eigenfunctions. We conjecture that the exact quantization then acts
by specifying reduced chain dynamics which can be stable (contractive) and thus reconstruct the
exact quantum data as their fixed point. (To date, this statement is verified only empirically and in
a vicinity of purely quartic or sextic potentialsV (q).)

Introduction

We study the 1D stationary Schrödinger equation with a real polynomial potentialV (q) of
degreeN(> 2) on the real axis, taken in the rescaled form

−ψ ′′(q) + [V (q) + λ]ψ(q) = 0 V (q) ≡ +qN + v1q
N−1 + v2q

N−2 + · · · + vN−1q. (1)

We write the collection of coefficients asEv def= (v1, . . . , vN−1), absorbing any constant term of
V into the spectral parameterλ (here thesign-reverseof the usual energyE).

All standard analytical treatments of this problem lead to asymptotic results at best,
i.e., to semiclassical or perturbative expansions which diverge factorially and are not even
Borel-summable in general ([1–12] provide some directly related references). Even though
sophisticated techniques can sometimes convert those results to converging numerical outputs,
those pathologies signal that such approaches may be mishandling the exact analytical structure
of the problem (1).

In this work we further develop an alternative and entirely exact method, which until
now was specialized to quantizing the spectrum in the fully homogeneous caseEv = 0
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[8, 9, 12]. There, it produced selfconsistent, Bohr–Sommerfeld-like quantization formulae
whose implementation (through iterative numerical schemes) apparently reconstructs the exact
spectrum (convergent iterations are always observed, but this fact remain to be proved).
The derivation of those results was quite indirect, via Borel transformations and quantum
resurgence; this made calculations lengthy, hard to generalize, and dependent on still
incompletely established regularity properties of the Borel-transformed solutions (cf [4];
theorem 1.2.1 in [11]).

The approach now to be described towards the same goal is much more direct, and
immediately applicable to general (inhomogeneous) potentials. It only proceeds through
a pair of auxiliary eigenvalue problems on a half-line, described in section 1; the spectral
determinants of these problems exactly express the wavefunction data at the endpoint through
the identity (35), and thus they inherit a bilinear (Wronskian) functional relation, equation (40),
through an analysis closely following Sibuya [2]. Exact quantization conditions are then readily
extracted for the corresponding Dirichlet/Neumann spectra, representing our analytical end
result: equations (42) (section 2). As in the homogeneous case, these determine the unknown
spectra only as fixed points of (explicit) iterations; the convergence of the latter is then a
meaningful separate question, which here remains conjectural but is numerically probed in the
remaining sections 3 and 4 on several test cases: first on even potentials, with the previous
spectra directly giving the eigenvalues of equation (1) over the whole line (section 3); then,
because equations (35) also supply the wavefunction data at the endpoint of the half-line, the
straight variation of this endpoint yields the solution of equation (1) itself; this allows us to
also test the formalism on a (ground state) eigenfunction calculation (section 4).

1. Spectral preliminaries

1.1. Polarized boundary conditions

We first cast equation (1) into two eigenvalue problems with asymmetric boundary conditions.
Specifically, we restrict the problem to a half-line whereV is confining: [0,+∞), we keep the
square-integrability at +∞, while we put a Neumann, resp. Dirichlet, boundary condition at the
finite endpointq = 0. Both conditions then define self-adjoint operatorsĤ +, resp.Ĥ−, which
have purely discrete spectra we respectively denote{E2k} and{E2k+1} for k = 0, 1, 2, . . . ;
these admit an asymptotic expansion which is the Bohr–Sommerfeld formula re-expanded in
descending fractional powers of the energy,∑
ν

b̃νE
ν
k ∼ (k + 1

2) k→∞ in N ν = µ,µ− 1

N
,µ− 2

N
, . . . (2)

with µ
def= 1

2
+

1

N
b̃µ

def=
∮
p2+qN=1

p dq

2π
= π−1/20(1/N)

N 0(1 +µ)
(> 0) (3)

andb̃µ− j

N
(Ev) = a polynomial in thevj ′(j ′ 6 j), e.g.,b̃µ− 1

N
= − 2v1

πN
. In complete generality,

the series depends on the sector (Neumann versus Dirichlet):b̃ν = b̃±ν , but not untilν = − 3
2;

whereas we will invoke those coefficients (and related ones, see section 1.4) only in the leading
range{ν > −µ}, before this complication appears. (IfV is an even polynomial, the two spectra
coincide with the even versus odd parity components of the spectral problem on the whole
line, implying b̃+

ν ≡ b̃−ν to all orders.)
Concerning the exponentµ (thegrowth order), the forthcoming arguments often assume

the propertyµ < 1 (i.e.N > 2) and alwaysµ 6= 1: the caseN = 2 (singular) must be ruled
out [12].
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Then, up to sign, the eigenvalues read as the zeros of the Fredholm determinants:

1±(λ) def=
∏
k

even
odd

(1 +λ/Ek). (4)

These infinite products converge to entire functions of orderµ in the variableλ, which are also
entire in the parametersEv [2].

At fixed (λ, Ev), let ψλ(q) denote a recessive solution of equation (1) (i.e., a solution
exponentially decreasing asq → +∞, which is unique up to normalization). Thenψλ(0)
vanishes simultaneously with1−(λ), (and likewise forψ ′λ(0) and1+(λ)). However, the
relations connecting them retain cumbersome factors unless each of1 andψ is suitably
renormalized. The procedure for the determinants is the well known zeta regularization, but a
separate rescaling of the wavefunctions also contributes in parallel to optimal simplification.

1.2. The spectral (or functional) determinants

By Mellin-transforming equation (2), the spectral zeta functions (in analogy with [7])

Z±(s) def=
∑
k

even
odd

E−sk (and Z(s)
def= Z+(s) +Z−(s)) (Res > µ) (5)

are seen to extendmeromorphicallyto lower Res values, and to be regular at integer points.
An effective analytical continuation is brought by an Euler–Maclaurin summation formula
which uses the asymptotic information (2): the regularized form

Z±(s) = lim
K→+∞

{∑
k<K

E−sk +
1

2
E−sK −

1

2

∑
{ν>ν0}

νb̃ν

(−s + ν)
E−s+νK

}
for k,K

even
odd (6)

converges as soon asν0 6 Res. At the regular points = 0, this gives

Z±(0) = b̃0

2
± 1

4
. (7)

The point s = 0 further serves to define spectral determinants, aszeta-regularized

products: detĤ± def= exp[−Z±′(0)] and, by straightforward extension,

D±(λ) def= det(Ĥ± + λ) ≡ exp[−Z±′(0)]1±(λ). (8)

This has the even more explicit Euler–Maclaurin representation

logD±(λ) = lim
K→+∞

{∑
k<K

log(Ek + λ) +
1

2
log(EK + λ)− 1

2

∑
{ν>ν0}
ν 6=0

b̃νE
ν
K

(
logEK − 1

ν

)}

for k,K
even
odd (9)

converging at any choice of depthν0 6 0 for the latter summation (having as index range the
initial stretch of the sequence{ν} in equation (2):ν = µ, µ − 1/N, . . . , ν0 exceptν = 0);
theK →∞ convergence can be speeded up by decreasingν0. However, equation (9) is given
here without its correction terms involving Bernoulli numbers, which become relevant from
ν0 = −µ downwards).

Crucially, we can and will form these zeta-regularized products for general sequences
admitting asymptotics of the form (2), including complex spectra [13] in which case the
formulae are interpreted by analytical continuation from{λ > 0, Ev = 0}. The {Ek} are the
zeros of the zeta-regularized product and theycompletely specify it(as opposed to a Hadamard
infinite product, for which at least a normalizing factor has to be supplied independently); this
normalizationcommutes with global spectral translations(unlike equation (4)).
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1.3. Absolute WKB normalization for recessive solutions

A recessive solution of equation (1) onR+ admits an exact WKB representation [6] (for
λ > − infR+ V ):

ψλ,q0(q) ≡ u(q)−1/2e−
∫ q
q0
u(q ′)dq ′

where, forq → +∞ u(q) ∼ 5(q) def= (V (q) + λ)1/2. (10)

This normalization awkwardly depends on the base pointq0, so we seek a more intrinsic
one withq0 = +∞:

ψλ(q)
def= u(q)−1/2e

∫ +∞
q

u(q ′)dq ′
. (11)

However, only(u−5)(q) is integrable at infinity whereasu(q) ∼ 5(q) ∼ qN/2, so we add
a further prescription,∫ +∞

q

u(q ′)dq ′ def=
∫ +∞

q

(u−5)dq ′ + Iq(s, λ)|s→0

Iq(s, λ)
def=
∫ +∞

q

(V (q ′) + λ)−s+1/2 dq ′
(12)

with the latter definitioncontinued analyticallyfrom the region{Res > µ, λ > − inf V }. For
the basic exampleV (q) = qN , in the notations of equation (3),∫ +∞

0
(qN + λ)−s+1/2dq ≡ 0(s − µ)0(1/N)

N 0(s − 1/2)
λ−s+µ ⇒

∫ +∞

0
(qN + λ)1/2 dq = πb̃µ

2 sinπµ
λµ.

(13)

In general, however,Iq(s, λ) develops a singularity ats = 0, which will explicitly affect
many formulae and hence requires further study. This singularity is immediately seen to be
independent ofq (since

∫ q ′′
q
(V + λ)−s+1/2dq ′ is finite for q, q ′′ finite), and ofλ (for N > 2)

thanks to the regular right-hand side (ats = 0) of the functional relation

∂

∂λ
Iq(s, λ) ≡ (−s + 1

2)Iq(s + 1, λ). (14)

That singularity is therefore an intrinsic feature of the potentialV alone. A more general
analysis ( [14], theorems 3 and 4) implies that it is a simple pole (at worst) and provides
a closed polynomial expressionR(Ev) for the residue (independent ofq, λ). Accordingly, a
natural regularization for the definition (12) is this finite part prescription:∫ +∞

q

5(q ′)dq ′ def= lim
s=0

[ ∫ +∞

q

(V + λ)−s+1/2 − R
s

]
. (15)

The new normalization (11) is then fully defined;it commutes with spatial translations.
Concretely, the desired analytical continuation ofIq(s, λ) leftwards from{Res > µ}

can be achieved using the functional relation (14) in reverse to perform repeated ‘symbolic
integrations’ inλ, exactly as explained for spectral zeta functions in [15]. But the latter
technique also works withq as integration variable instead ofλ: i.e., expanding

(V (q) + λ)−s+1/2 ∼
∑
σ

βσ−Ns(Ev, λ)qσ−Ns for q → +∞
(
σ = N

2
,
N

2
− 1

N
, . . .

)
(16)
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(which governs5(q) when s = 0), we can then specifyIq(s, λ) as the indefinite integral
consistent with the ‘symbolic integration’ rules

Iq(s, λ) ∼
∑
σ

βσ−Ns
∫ +∞

q

q ′σ−Ns dq ′∫ +∞

q

q ′ρdq ′ def=
{
−qρ+1/(ρ + 1) (ρ 6= −1)

− logq (ρ = −1).

(17)

Hence the pole ofIq(s, λ) at s = 0 is contributed by the term havingρ = (−1− Ns) in
equation (17), which gives the residue

R = Ress=0Iq(s, λ) = β−1/N (independent ofq, λ). (18)

This residue will then become fully explicit through equation (32) below.
Also, substitution of equations (16) and (17) withs = 0 into equation (11) yields the

asymptotic behaviour

ψλ(q) ∼ q−(N/4+β−1) exp

{
−

∑
{σ>−1}

βσq
σ+1/(σ + 1)

}
(q → +∞) (19)

(with no outer constant prefactor); this shows that the solution (11) exactly reproduces the
subdominant solution defined in [2] (chapter 2, section 6).

1.4. Residues, residues

A digression is needed here to better understand the residueR from equation (18): by
relating various asymptotic expansions we will find an identity, equation (30), among several
independently defined constants includingR.

(a) We first consider the quantum partition function of the operator−d2/dq2 +V (|q|) on
the whole line, namely

θ(t)
def=

+∞∑
k=0

e−tEk . (20)

This admits at ↓ 0 asymptotic expansion obtainable as in the caseV (q) = |q|N , but
incorporating the lower-degree terms ofV as perturbations:

θ(t) ∼
∑
ν

c̃−ν t−ν t ↓ 0 − ν = −µ,−µ +
1

N
,−µ +

2

N
, . . . (21)

(as with equation (2), this expansion is taken only to some finite order here). The leading
nonclassical contribution to equation (21) again arises from the|q|N term for which it is
known to be O(tµ); therefore, below this order, equation (21) also applies to (and is more
easily computed from) theclassicalpartition function, i.e.,

θcl(t) =
∫
R2

dp dq

2π
e−(p

2+V (|q|)t ≡ 1√
πt

∫ +∞

0
e−V (q)t dq. (22)

We now Mellin-transform both partition functions (20) and (22) term by term, as

1

0(s)

∫ +∞

0
θ(t)e−λt t s−1 dt =

+∞∑
k=0

(Ek + λ)−s def= Z(s, λ) (23)

1

0(s)

∫ +∞

0
θcl(t)e

−λt t s−1dt = 0(s − 1/2)

0(s)
√
π

∫ +∞

0
(V (q) + λ)−s+1/2dq

def= Zcl(s, λ). (24)
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On the quantum side (equation (23)), this zeta functionZ(s, λ) [15] relates to equation (5)
throughZ(s, 0) ≡ Z(s), and to equation (8) through

exp[−∂Z(s, λ)/∂s]s=0 ≡ D(λ) def= D+(λ)D−(λ) (25)

whereas equation (24), drawn from the rightmost equation (22), creates a classical picture in
full analogy; in particular, the counterpart of equation (25) evaluates using

[−∂Zcl(s, λ)/∂s]s=0 = 2
∫ +∞

0
5(q) dq (26)

(in the sense of equation (15)).
(The parallelism between the normalization procedures (8) for the determinants, resp. (12)

for the recessive solutions, is now fully clear: they involve the same analytical continuations
to s = 0 ofZ(s, λ), resp.Zcl(s, λ).)

The small-t expansion (21) itself Mellin-transforms to a large-λ expansion

Z(s, λ) ∼
∑
ν

c̃−ν
0(s − ν)
0(s)

λ−s+ν (λ→ +∞) (27)

also valid strictly above O(λ−s−µ) for the corresponding classical function (24); and the
analogous treatment for the derivatives ats = 0 [15] likewise yields

logD(λ) ∼
∑
ν

c̃−ν [−0(−ν)λν ] with [−0(−0)λ0]
def= logλ (28)

also valid strictly above O(λ−µ) for the analogous classical quantity (26).
Below, we will specially consider the coefficientc̃0; by the preceding arguments it has a

wholly classical origin, and it is: the coefficient oft0 in θ(t) or θcl(t); the coefficient of logλ in
logD(λ) or 2

∫ +∞
0 (V (q)+λ)1/2dq; the coefficient ofλ−1 (‘residue’) in

∫ +∞
0 (V (q)+λ)−1/2dq

(by settings = 1 in equations (24) and (27) forZcl).
(b) The zeros of the above determinantD(λ) being{−Ek}, their asymptotic behaviour is

given by the Bohr–Sommerfeld formula (2). The following specifically holds before the latter
begins to depend on the parity ofk, which may occur forν 6 − 3

2. Then, the two large-energy
expansions (2), (28) relating to the same function have to match [6, 9]: their exponents{ν}
must coincide, as is already manifest, and their coefficients must be related, actually as

b̃ν ≡ c̃−ν/ 0(1 + ν) (ν > − 3
2). (29)

This result at once describes (the leading part of) the expansion (2) and shows that it is of
classical origin up to O(λ−µ) (excluded). We are then going to focus on the quantityb̃0 which
contributes a constant shift term to the semiclassical series (2).

(c) In the purely classical expansion (16) of(V (q) + λ)1/2 for q → +∞, we select the
coefficient ofq−1, namelyβ−1 (cf [2], chapter 2). By simple power counting, this coefficient
is independent ofλ (forN > 2) and vanishes forN odd. ForN even, it is the residue atq = ∞
of the complex-analytic function(V (q) + λ)1/2

def∼ q(N/2) (single-valued) nearq = ∞. We
also denote itβ−1(Ev) to stress that it is an invariant ofV .

Our present goal is to obtain the following identifications, withR as in equation (18):

Z(0)
(i)= b̃0

(ii)= c̃0
(iii)= −2R

(iv)= − 2

N
β−1(Ev) (≡ 0 forN odd). (30)

Proof. (i) immediately follows from equations (5,7); (ii ), from equation (29) specialized at
ν = 0; (iii ), from comparing the residues ats = 0 of the two integrals in equation (24); and
finally, (iv) from equation (18). �
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The most easily accessible of these invariants is thenβ−1, from the large-q expansion of

[V (q) + λ]1/2 = qN/2
[
1 +

v1

q
+ · · · vN−1

qN−1
+
λ

qN

]1/2

. (31)

When the power in brackets is expanded, the coefficient ofq−1 gives

β−1 =
∑
k>0

( 1
2)(

1
2 − 1) . . . ( 1

2 − k + 1)
∑
{rj }

v
r1
1 . . . v

rN−1

N−1

r1! . . . rN−1!
(for N > 2) (32)

the inner summation being over(N − 1)-uples{rj } subject to
∑N−1

j=1 rj = k and
∑N−1

j=1 jrj =
1 +N/2. Upon division byN , equation (32) explicitly provides the residueR, in a form valid
for N > 2 which then agrees with the result from [14].

Finally, again by simple power counting arguments, we remark that these classical
invariants are not only absent for oddN , but also vanish for another broad class of potentials:
all purely even polynomials of degreeN multiple of four (as well as for allN 6= 2 in the
special homogeneous case:β−1(E0) ≡ 0). BarringN = 2, nontrivial residues then first occur
for non-even quartic potentials:

β−1(Ev) = v3

2
− v1v2

4
+
v3

1

16
(V (q) = q4 + v1q

3 + v2q
2 + v3q) (33)

and, within even potentials, for sextic ones:

β−1(Ev) = v4

2
− v

2
2

8
(V (q) = q6 + v2q

4 + v4q
2). (34)

1.5. Basic identities

Under the above notations, very simple identities connect the spectral determinants and the
absolute-normalized solution:

D−(λ) ≡ ψλ(0) D+(λ) ≡ −ψ ′λ(0). (35)

(The proof is a simple rewriting of the arguments in [6], appendices A and D; see [16] for
details.)

Next, following [2], we continue equation (1) in the complexq-plane down to the rotated
half-line lying in the adjacent Stokes direction, namely [0, e−iϕ/2∞) where

ϕ
def= 4π

N + 2
(spectral symmetry angle). (36)

By simple complex scaling uponq,

ψ [1] def= ψe−iϕλ(e
iϕ/2q; Ev[1]) (37)

provides another solution (to equation (1)) now recessive in the Stokes direction e−iϕ/2, where

Ev[1] def= (eiϕ/2v1, e
2iϕ/2v2, . . . ,e

(N−1)iϕ/2vN−1) (38)

expresses an action of the discrete rotation group of order(N + 2) on the coefficients;
equivalently it acts upon the potentialV , mapping it toV [1] , thenV [2], . . . (now complex
potentials). The order of theeffectivesymmetry group is

L = N + 2 generically L = N/2 + 1 for an even polynomialV. (39)

Now the Wronskian of the two solutionsψ,ψ [1] of equation (1), a constant, can be
evaluated explicitly from their respective asymptotic forms (19), both valid asq → +∞ [2],
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and also expressed atq = 0 by means of the respective identities (35) for the potentialsV and
V [1] . Matching the two calculations then yields the fundamental bilinear identity

e+iϕ/4D+(e−iϕλ, Ev[1])D−(λ, Ev)− e−iϕ/4D+(λ, Ev)D−(e−iϕλ, Ev[1]) ≡ 2ieiϕβ−1(Ev)/2 (40)

generalizing the homogeneous case [9]. We stress that our approach will bypass any other
matching of solutions, like those required in connection problems between nonadjacent Stokes
directions, which yield nontrivial Stokes multipliers...

Remarks.

(a) In the harmonic case (V (q) = q2,N = 2, ϕ = π ), many of our arguments become invalid
but the end result (40) remains, except that the residue is nowλ-dependent:β−1 = λ/2
from equation (16) (the identity (40) now verifies by applying the reflection formula for
0(z) toD+(λ) = 2

√
π2−λ/2/ 0( 1+λ

4 ),D
−(λ) = √π2−λ/2/ 0( 3+λ

4 )).
(b) Identities similar to equation (40) have also surfaced in quantum integrable theories, as

‘quantum Wronskian conditions’ [17].

2. Exact quantization conditions

For a homogeneous potential, we currently believe that the functional relation (40) and the
asymptotic law (2) (imposed to some o(1) accuracy) together suffice to specify the whole
spectrum exactly: indeed, we empirically recovered the spectrum as the fixed point of
an (apparently) contractive mapping built using just that input [8, 9, 12]. There, for zeta-
regularized products built over sequences with prescribed Bohr–Sommerfeld asymptotics, the
single Wronskian identity (40) proved so coercive as to fix both its arguments completely. We
now implement this same guiding idea upon general polynomial potentials.

2.1. The analytical result

Guided by the homogeneous case [9], we strive to turn equation (40) into equations where
at least the Neumann (+) and Dirichlet (−) spectra appear decoupled. To keep, say, only
the former (the other admits a mirror-image treatment), we take equation (40) and its partner
with Ev[−1] (written invoking the homogeneity propertyβ−1(Ev[`]) ≡ (−1)`β−1(Ev)), then we set
λ = −E2k and eliminateD−(λ, Ev) from the resulting pair, to find

D+(e−iϕλ, Ev[1])/D+(e+iϕλ, Ev[−1])|λ=−E2k = −e−iϕ/2 + iϕβ−1(Ev). (41)

Whereas the procedure forV (q) = qN closed upon itself at once, this general one invokes
the complex-rotated potentialsV [±1] and, step by step, all theL partner potentialsV [`] to
reach closure. The spectra{E[`]

2k } (mostly complex) then altogether make up the independent
unknowns (they are not independent as analytical continuations of one another in complex
Ev-space, but we are unable to use this relationship explicitly).

Next, equation (41) (and its cyclic permutations on theEv[`] ) are converted to logarithmic
form, with absolute phases properly assigned by reference to the homogeneous case [9]. This
operation is essential to create quantization relations in the Bohr–Sommerfeld form (governed
by an explicit quantum numberk = 0, 1, 2, . . .), but now exact. Our final result forN > 2,
in a synthetic notation, is an uncoupled pair of systems (using either (+,k even) for Neumann,
or (−, k odd) for Dirichlet), each displayingL coupled exact quantization conditions: one per
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spectrum{E[`]
k } (with ` integer modL),

1

π
8

[`]
± (E

[`]
k ) = k +

1

2
± N − 2

2(N + 2)
+ (−1)`

ϕ

π
β−1(Ev) for k = 0,2,4,...

1,3,5,...

where 8
[`]
± (E)

def= −i[logD±(−e−iϕE, Ev[`+1])− logD±(−e+iϕE, Ev[`−1])]

(42)

with the branches of logD±(λ) taken by continuity from(λ = 0, Ev = 0).
The harmonic caseV (q) = q2 (with N = L = 2, ϕ = π ) holds again with a special

degenerate structure,8[`]
± (E) ≡ 0 butβ−1 = −E/2. The caseV (q) = |q| (N = 1) is handled

in [12].

2.2. Discussion

All following considerations are meant in either spectral sector independently (Neumann, resp.
Dirichlet), with all quantum numbers accordingly kept even, resp. odd.

Equations (42) form a system of constraints tying eachE
[`]
k at fixed` to the two other

spectra{E[`−1]
j }, {E[`+1]

j } (whose zeta-regularized products build the determinants defining

8
[`]
± ). The system of all such points in interaction is better displayed, in proper relative

positions, if each spectrum is suitably rotated (we then call it a ‘chain’, as a more general
name): for̀ = 0, . . . , L− 1 (modL), the`th such chain is the set{ei`ϕE

[`]
k }, and each of its

points is under the influence of every point in the two adjacent ((` ± 1)th) chains—through
the logarithm of their complex difference which enters equation (42) via the formula (9). (In
the generic caseL = N + 2, adjacency is correctly shown on a double covering of the circle
of asymptotic directions; the circle itself suffices only in the purely even caseL = N/2 + 1.)

The`th equation is now a complex one precisely when its unknownsE
[`]
k are themselves

complex, i.e. for̀ 6= 0 orL/2: equation (42) thus remains a formally ‘complete’ system of
mutual constraints for the unknownsE[`]

k . As in the homogeneous case we then surmise that
equations (42) are not only exact, but also genuinely complete, quantization conditions; i.e.,
they have the capacity to determine all their unknowns provided the asymptotic condition (2)
is also enforced upon each spectrum{E[`]

k } separately (using the rotated coefficientsEv[`] ). If,
moreover, this resolution can be performed in any constructive way, then we may argue that
the analytical formulae (42) themselves are ‘giving’ the solution of the stated spectral problem
(Dirichlet or Neumann on the half-line).

At present we can further resolve equations (42) only numerically. We will then turn
to computer experiments, mostly upon quartic potentials, which empirically confirm our
conjecture in some regions of parameter space, by achievingeffectivecomputations of the
spectra out of equations (42) (plus equations (2)).

3. Numerical tests of exact spectrum quantization

We will basically seek to solve equations (42) by successive approximations for each level
E

[`]
k in turn (using Newton’s root-searching method). The fully exact equations couple all

the infinitely many chain points, but any concrete calculation scheme can only keep a finite
number and this limitation alone will make it approximate. A sensible truncation method, in
line with the asymptotic constraint of equation (2), is to use the exact equations up to some
preset quantum numberk = K, then switch to purely semiclassical evaluations beyond. The
height of the thresholdK, together with the depthν0 (6 0) down to which the semiclassical
formula (2) is used, control the final accuracy. The zeta-regularized product formula (9) also
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Figure 1. Interacting chains for even quartic potentialsV (q) = q4 + v2q
2, shown for odd spectral

sector (i.e. odd quantum numberk throughout). The chains (i.e. their initial portions) are seen here
in their respective equilibrium positions{Ek}, {jE′k}, {j2E′′k } for ` = 0, 1, 2 (points are marked
with the corresponding̀-value). The homogeneous casev2 = 0 (at centre) has full (ternary plus
complex-conjugation) symmetry. Asv2→−∞, the complex chains tend to shadow the resonance
spectrum{±(2k + 1)i

√−v2} of the potential−|v2|q2; asv2 → +∞, they tend to shadow the
sequence{−(2k + 1)

√
v2} (` = 1 chain for the potentialv2q

2).

has to be used at a fixed upper summation limitK: it is consistent to set the latter at the same
threshold value (and to push the semiclassical sum in the right-hand side of equation (9) to
the same depthν0 (6 0) as equation (2), to make their large-K accuracies match). This way,
thek > K tails of all chains are properly taken into account, albeit only semiclassically; fully
exact calculations would need to handle all countably many chain points at once (K = +∞),
hence are not feasible in practice.

The preceding formalism immediately provides the quantization of levels for an even
polynomial potential on the real line: parity symmetry splits the spectrum into even and odd
sectors, which exactly solve the Neumann and Dirichlet problem on the half-line, respectively.
As a side effect, parity also halves the order of symmetryL (cf equation (39)).

3.1. Even quartic oscillators

We now test the exact framework upon the quantization of levels for even potentialsV (q) =
q4 + v2q

2 on the real line (the order of symmetry beingL = 3).
To the initially realv2 giving the real spectrum{Ek} are then associated: a complex

spectrum{E′k} for the coupling constant jv2, and{E′′k } for j2v2 (where j= e2π i/3). The three
chains{Ek}, j{E′k}, j2{E′′k } are shown on figure 1 for selected values of the harmonic coupling
constantv2. They altogether constitute the reduced dynamical unknowns; by reality symmetry,
there are only two independent chains (one real, and one complex).

Then in order to, at once, reach an equilibrium point for all constraints and gain evidence
for its uniqueness, we iteratively apply an elementary step: to recompute each chain in turn
as (numerical) solution of its equation (42) in terms of the adjacent chains at their current
locations. Through an appropriate succession of such steps, we then try to build up a global
process yielding a contractive iteration, as in the homogeneous case (now many more fine
details can vary, and we tried but a few combinations). For us, a numerical validation of the
exact quantization formulae results if one such iteration is found which displaysgeometric
convergence to thecorrect spectra, i.e., a contraction ratio can be estimated with a minimum
of numerical stability,and the limiting chains (checked upon their lowest five points, say)
agree with independent eigenvalue calculations (e.g. matrix diagonalization).

In order to define the mandatory asymptotic behaviours of all chains, we also need
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reference semiclassical chains for all three rotations ofv2. These we take as the (numerical)
solutions of equation (2) pushed to six terms(= O(E−1/2), for betterk→ +∞ convergence).
The same chains also conveniently serve as initial iteration data.

Such an iterative approach was found for the homogeneous case (v2 = 0) and it yielded
strong contraction ratios (.0.4) [8, 9]. However, this case also enjoyed full ternary rotation
symmetry, and a qualitative change occurs now that this symmetry has to be relaxed. If we
try to deform those earlierv2 = 0 iterations intov2-dependent schemes, the latter must apply
synchronous updating to keep with the full ternary symmetry atv2 = 0 (i.e., the chains are
recomputed individually but actually get updated all at once, at each completion of a full`-
cycle). Unfortunately, such iteration schemes also appear to excite new (symmetry-breaking)
chain fluctuation modes possessing much lower, almost marginal, stability (contraction ratios
≈ ± 0.9, down tov2 = 0). As a consequence, their convergence discontinuously drops in
the immediate vicinity ofv2 = 0, down to unacceptably low levels. On the other hand, we
empirically found that iteration schemes of a different type, whichimmediatelyupdate the
chains one by one, can remain fairly stable in a finite neighbourhood ofv2 = 0 (even though
they are not as good as the earlier ones at the valuev2 = 0, where now the ternary symmetry
is spontaneously broken).

The simplest such scheme (‘A’) consists of recomputing the real and the complex chain
alternatively. Forv2 near zero, this already appears to converge nicely and it indeed yields a
first validation of the exact formalism. Still, its behaviour deteriorates asv2 grows: between
v2 ≈ +2 to +3, the iterations start to converge more erratically, then our root-searching
algorithm (the Newton method) becomes unstable, and shortly afterwards the contraction
ratios of the iteration (plotted in figure 2, left) shoot up to almost unity (forv2 < 2 they were
estimated both from the iteration sequence and from diagonalizing the linearized dynamics
near the fixed point, and forv2 > 2 only the latter way). In particular, scheme ‘A’ cannot
be carried towards the harmonic limit. In contrast, it behaves much better in the negative
direction (double-well region), showing no sign of degradation over our test range, i.e., down
to v2 ≈ −10 !

The positive-v2 breakdown is possibly explained by figure 1 (right): whenv2 grows, the
complex chain and its conjugate become almost degenerate towards low quantum numbers (a
sort of complex tunnelling effect), causing larger logarithmic pair interactions and instabilities
(with the linearized-dynamics matrix entries growing like [mutual distance]−1). An obvious
remedy is then to remove the interaction between any two complex-conjugate chain points
from the dynamics, by enforcing this symmetry as ana priori constraint (immediate updating
also has to be kept); the so-modified scheme (‘B’) exhibits a much more uniform linear stability
indeed (figure 2, right). This scheme converges and allows us to validate the exact formalism
for larger values ofv2, up tov2 ≈ +5. Beyond, we again become unable to get any convergence;
so, global instabilities must still be creeping in, albeit more slowly. Again, the root-searching
algorithm (the Newton method) diverges first, but now the linear contraction ratios themselves
hardly grow at all (as obtained by diagonalization). Hence scheme ‘B’ seems not to break
down like ‘A’ but rather to reach certain practical limits, beyond which only more elaborate
implementations might resolve the case. (Perhaps, e.g., a more robust root-searching method
would work, or the naive branch prescriptions implied in equation (42) ought to be revised at
such a distance from the homogeneous case.)

The preceding break-points referred to iterations in the even-parity sector. As figure 2
shows, the odd sector tends to behave more stably (already in the homogeneous case [8, 9]).
A conceivable improvement might thus be to confine iterations to the odd spectrum, then to
solve for the even determinants from the coupling relations (40) instead.

In conclusion, the preceding tests favour the validity and effectiveness of the exact
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Figure 2. Linear contraction ratios for iteration schemes associated with potentialsV (q) =
q4 + v2q

2, as functions of the couplingv2. +: for even spectrum;◦: for odd spectrum. Thinner
symbols: computations with the thresholdK = 325 (see main text); thicker symbols:empirical
extrapolations toK = +∞ (when data permit). Left: numerical estimates for iteration scheme
‘A’ with immediate updating (see main text); although this remark is inconclusive, we add that the
numerical values of the ratios remain strictly below unity (no error estimate at all is implied in
our data, but 2–3 digit stability is typically seen at fixed finiteK). Right: numerically estimated
moduli of the ratios for iteration scheme ‘B’ which further decouples conjugate-pair interactions
(here, various parts of data may correspond to different eigenvalue branches, some being negative
or in complex pairs).

quantization mechanism for even quartic potentials over a sizable range of the harmonic
couplingv2 about zero, but are currently inconclusive forv2 & +5.

In addition, we lately extended the scheme to sextic even potentials, with qualitatively
similar results for the (still few) cases tested.

3.2. Extension to non-even potentials

In [12] we showed that the exact quantization formalism was fully valid for homogeneous
potentials of any odd degreeN , and specially forN = 1 which has Airy functions both as
solutions and as spectral determinants. The paradox in the very regular behaviour of this case is
that the underlying potentialV (q) = |q| is not even once differentiable atq = 0. This example
paved the way to the present generalization, establishing that the ‘even/odd’ decomposition
needed in the homogeneous case was just a Neumann/Dirichlet splitting, any parity properties
of thepolynomialV being irrelevant: an even potential over the whole line is always present
asV (|q|) (once its continuous differentiability is recognized as immaterial).

We thus also tested the exact quantization conditions (42) upon a few non-even quartic
polynomials (now for the Dirichlet/Neumann spectra). The exact quantization conditions then
involve L = 6 distinct chains:` = 0, 3 are real,(1, 5), (2, 4) being doublets of complex
conjugates. We found one iteration sequence (‘C’) to converge better than others (for no clear
reason):̀ = {0, 2, 3, 1} (then cyclically continued, with immediate updating of each chain and
straight enforcement of 1–5 and 2–4 symmetry). The overall results were then comparable to
those above for even polynomials (though occasionally achieving a lower numerical accuracy).

This extension of the exact quantization formalism to non-even polynomials crucially
opens the way to another application (and validation) now to be described.
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4. Exact wavefunction analysis

4.1. Analytical reconstruction of the wavefunction

If no parity property is imposed upon the polynomialsV (q)with respect to the endpointq = 0,
then this endpoint can be taken to an arbitrary valuea (on the real line, at least), thus restoring
translational invariance effectively. Equivalently, 0 is kept as endpoint but the potential gets

shifted toVa(q)
def= V (q + a) − V (a) on the half-line (becomingV (|q| + a) − V (a) on the

whole line).
So, we now use equation (35) atq = a instead of zero and from right to left, to state

that the absolute-normalized solution of equation (1) atq = a, resp. its first derivative, are
specified as

ψλ(a) ≡ D−a (V (a) + λ) ψ ′λ(a) ≡ −D+
a (V (a) + λ) (43)

in terms of the spectral determinants for the modified potentialVa(q) on [0,+∞), denoted
D±a . But these in turn are canonically specified as the zeta-regularized products over their own
chains of zeros; now the latter, as the eigenvalues of(Va)

[`](q), are given by exact quantization
conditions of the form (42), hopefully through some convergent iteration scheme as above.
Thereupon, equation (43) simply asks to apply the zeta-regularized product formula once more
(at one prescribed point,(V (a)+λ)), in order to output the absolute-normalized solutionψ(a)

(or ψ ′(a)). Thus, equation (43) acts as the last instruction in a procedure to solve the full
differential equation (1)—for arbitraryλ—through equations (42) (still subject to the latter
giving convergent iterations, if an effective algorithm is wanted).

As a further prospect, quite general spectral problems can subsequently be tackled in
principle. For example, to find the eigenvaluesλ of equation (1) on the whole line for a general
potential of even degree, one may proceed to solve equation (1) as just explained but from both
ends of theq-axis, then match the two resulting values for(ψ ′/ψ)(a) at some finite locationa.

4.2. A numerical test

We now validate equation (43) with a calculation of the ground state eigenfunction for the
homogeneous caseV (q) = q4. The shifted potential is thenVa(q) = q4+4aq3+6a2q2+4a3q,
andψ(a) is the value of its determinantD−a (λ) at the pointλ = a4−E0, with the eigenvalue
E0 ≈ 1.060 362 09 being part of the input here (while it belongs to the output of an exact level
calculation forV (q) = q4 itself [8]).

The exact quantization conditions forVa(q) are involvingL = 6 distinct chains (except
ata = 0, whereL = 3 by parity symmetry). We only tested calculations ofψ(a) (notψ ′(a))
for a few values ofa > 0, and found the above iteration scheme ‘C’ to converge indeed for
a . 1.7 (with a contraction ratio per cycle.0.67). Instabilities made us unable to pin down
convergent iterations fora & 1.7 (similar comments apply as for scheme ‘B’ whenv2 & +5).
Our output points are plotted in figure 3, against the curve produced by a standard integration
routine and upon which only the global normalization was fitted (a posteriori): the results
show an overall 4–5-digit agreement.

4.3. Concluding remarks

We have reduced the resolution of polynomial Schrödinger equations (1) to that of a discrete
system of selfconsistent exact quantization conditions, equations (42), having as unknowns
(N +2) countable sequences of points subject to asymptotic boundary conditions consisting of
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Figure 3. Calculations of the ground-state eigenfunction for the homogeneous quartic potential
q4, as a function of the positionq ≡ a. +: absolute-normalized data points obtained by iterative
resolution of the exact quantization conditions for the determinantsD−a (scheme ‘C’, using the
threshold valueK = 1029); in superposition,�: numerical estimates for the corresponding
contraction ratios. Curve: computer integration of the Schrödinger equation by the NAG routine
D02KEF; its rescaling factor was the only number fixed by a fit.

standard Bohr–Sommerfeld formulae (2). Equations (42) are supplying explicit equilibrium
conditions for those semi-infinite and asymptotically tethered chains.

We also have growingnumerical evidence that the so-reduced problem is effectively
solvable in some regions of parameter space through iterations which seem to converge
geometrically: it thus appears to be a self-stabilizing system, in sharp contrast with the original
Schr̈odinger dynamics. This strengthens our following conjecture: (in such cases) the relevant
equilibrium solution is realized as a fixed point of a contractive mapping, which also admits
robust finite-dimensional approximations. This results in an overall indirect constructive
mechanism, where exact quantization formulae explicitly specify the mapping only.

On the darker side, since equations (42) are very tied to the values of the degreeN and
symmetry orderL, they may be ill-suited to transitional regions where one of these numbers
jumps (e.g,v2→ 0 or +∞ in V (q) = q4+v2q

2). Moreover, our tests still span a limited range,
mostly quartic potentials close toq4, a few even sextic ones, and (previously [9]) homogeneous
potentials for their spectra only (but up to quite high degrees). Effectiveness for higherN ,
and extensions to arbitrary complexq andEv, to more general differential systems, etc, are all
conceivable but they remain open issues.

Finally we argue that, while the integration of equation (1) may still be a remote goal using
quadratures alone, another valuable question is how much the set of admissible integration
methods needs to be enlarged to reach that same purpose. Our findings provide clues to the
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latter issue: they strongly suggest that zeta-regularized infinite products (of order<1) plus the
solving of one type of fixed-point equations (which seem to have contractive and other nice
properties) are pertinent additional integration tools, which are possibly sufficient to the task
(already in several cases, at least).
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